

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	climin 0.1 documentation

climin: optimization, straight-forward

introduction

Optimization is a key ingredient in modern machine learning. While many models
can be optimized in specific ways, several need very general gradient based
techniques–e.g. neural networks. What’s even worse is that you never know
whether your model does not work or you just have not found the right optimizer.

This is where climin comes in. We offer you many different off-the-shelf
optimizers, such as LBFGS, stochastic gradient descent with Nesterov momentum,
nonlinear conjugate gradients, resilient propagation, rmsprop and more.

But what is best, is that we know that optimization is a process that needs to
be analyzed. This is why climin does not offer you a black box function call
that takes ages to run and might give you a good minimum of your training loss.
Since this is not what you care about, climin takes you with you on its travel
through the error landscape... in a classic for loop:

import climin

network = make_network() # your neural network
training_data = load_train_data() # your training data
validation_data = load_validation_data() # your validation data
test_data = load_test_data() # your testing data

opt = climin.Lbfgs(network.parameters,
 network.loss,
 network.d_loss_d_parameters,
 args=itertools.repeat((training_data, {})))

for info in opt:
 validation_loss = network.loss(network.parameters, validation_data)
 print info['loss'], validation_loss

print network.loss(test_data)

Climin works on the CPU (via numpy and scipy) and in parts on the GPU (via
gnumpy).

Starting points

If you want to see how climin works and use climin asap, check out the
Tutorial. Details on Installation are available. A list
of the optimizers implemented can be found in the overview below. If
you want to understand the design decisions of climin, read the
Manifest.

Contact & Community

Climin was started by people from the Biomimetic robotics and machine learning
group [http://brml.de] at the Technische Universitaet Muenchen [http://tum.de]. If you have any questions, there is a mailinglist at
climin@librelist.com. Just send an email to
subscribe or checkout the archive [http://librelist.com/browser/climin/].
The software is hosted over at our
github repository [http://github.com/BRML/climin], where you can also find
our issue tracker [http://github.com/BRML/climin/issues].

Meta

	Manifest

	Installation

Basics

	Tutorial
	Defining a Loss Function

	Logistic Regression

	An Array for the Parameters

	Using data

	Creating an Optimizer

	Optimization as Iteration

	Using different optimizers

	Conclusion and Next Steps

	Dealing with parameters
	Creating parameter sets

	Calculating derivatives in place

	Initializing parameters

	Advanced data handling
	Mini batches

	External memory

	Further usages

	Interrupting and Resuming via Checkpoints
	Saving the state to disk (or somewhere else)

	Loading the state from disk

Reference

Optimizer overview

	Gradient Descent

	rmsprop

	Adadelta

	Adam

	Resilient Propagation

	Conjugate Gradients

	Quasi-Newton (BFGS, L-BFGS)

Convenience, Utilities

	Schedules

	Initialization of Parameters

	Line searches

	Utility functions

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	climin 0.1 documentation

Manifest

Climin was started in the beginning with the observation that plain
stochastic gradient descent was not able to find good solutions for
sparse filtering [sparsefiltering]. The original article mentions
the use of LBFGS as an optimization method, yet the implementation
offered by scipy did not solve the problem for us immediately. Since
matlab has a very powerful optimization library, we decided that
it was time for Python to catch up in this respect.

We found several requirements for a good optimization library.

	Optimization in machine learning is mostly accompanied by online
evaluation code: live plotting of error curves, parameters or
sending you an email once your model has beaten the current state of
the art. Also, you might have your own stopping criterions.
We call this the “side logic” of an optimization.
Every user has his own way of dealing with this side logic, and a lot of
throw away code is being written for this. We wanted to make this part as
easy as possible for the user.

	Do one thing, and do that right: climin is independent of your models
and the way you work with optimization. We have a simple protocol: loss
functions (and their derivatives) and a parameter array. Also, we do not
force any framework on you on and come up with things that try to solve
everything.

	Most of the optimizers, i.e. those that do not rely on too much linear
algebra such as matrix inversions, should not only work on the CPU via
numpy but also on the GPU via gnumpy.

	Optimizers should be easily switchable; if we have a model and a loss
we wanted to be able to quickly experiment with different methods.

	Optimizers should be reasonably fast. Most of the computational work
in machine learning is done within the models anyway. Yet, we want a
clean python code base without C extensions. We also found that speeding
up everything with Cython would be a good way to go where necessary.
Since numba is around the corner, we wanted to decide this in a later
version.

	Make development of new optimizers straight forward. The implementation
of every optimizer has very little overhead, the most of it being assigning hyper parameters to class values.

The main idea of climin is to treat optimizers as iterators. This allows
to have the logic surrounding it right in the same scope and written code
block as the optimization. Also, callbacks are really ugly! Python has better
tools for that.

	[sparsefiltering]	Ngiam, Jiquan, et al. “Sparse filtering.” Advances in
Neural Information Processing Systems. 2011.

 Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	climin 0.1 documentation

Installation

Climin has been tested on Python 2.7 [http://python.org] with numpy [http://numpy.org] 1.8 and
scipy [http://scipy.org] 0.13. Currently, it is only available via git from
github:

$ git clone https://github.com/BRML/climin.git

After that, pip [http://www.pip-installer.org/] can be used to install it on the Python path:

$ cd climin
$ pip install .

If you want to know whether everything works as we expect it, run the test
suite:

$ nosetests tests/

for which nose [https://nose.readthedocs.org/en/latest/] is required.

 Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	climin 0.1 documentation

Tutorial

In the following we will explain the basic features of climin with a simple
example. For that we will first use a multinomial logistic regression, which
suffices to show much of climin’s functionality.

Although we will use numpy in this example, we have spent quite some effort to
make most optimizers work with gnumpy as well. This makes the use of GPUs
possible. Check the reference documentation for specific optimizers whether
the usage of GPU is supported.

Defining a Loss Function

At the heart of optimizitation lies the objective function we wish to optimize.
In the case of climin, we will always be concernced with minimization. Even
though algorithms are sometimes defined with respect to maximization (e.g.i
Bayesian optimization or evolution strategies) in the literature. Thus, we will
also be talking about loss functions.

A loss function in climin follows a simple protocol: a callable (e.g. a
function) which takes an array with a single dimension as input and
returns a scalar. An example would be a simple polynomial of degree 2:

def loss(x):
 return (x ** 2).sum()

In machine learning, this will mostly be the parameters of our model.
Additionally, we will often have further arguments to the loss, the most
important being the data that our model works on.

Logistic Regression

Optimizing a scalar quadratic with an iterative technique is all nice, but
we want to do more complicated things. We will thus move on to use logistic
regression.

In climin, the parameter vector will always be one dimensional. Your loss
function will have to unpack that vector into the various parameters of
different shapes. While this might seem tedious at first, it makes some
calculations much easier and also more efficient.

Logistic regression has commonly two different parameter sets, the
weight matrix (or coefficients) and the bias (or intercept). To unpack
the parameters we define the following function:

import numpy as np

def unpack_parameters(pars):
 w = pars[:n_inpt * n_output].reshape((n_inpt, n_output))
 b = pars[n_inpt * n_output:].reshape((1, n_output))
 return w, b

We assume that inputs to our model will be an array of size (n, d), where
n refers to the number of samples and d to the dimensionality. Given
some input we can then make predictions with the following function:

def predict(parameters, inpt):
 w, b = unpack_parameters(parameters)
 before_softmax = np.dot(inpt, w) + b
 softmaxed = np.exp(before_softmax - before_softmax.max(axis=1)[:, np.newaxis])
 return softmaxed / softmaxed.sum(axis=1)[:, np.newaxis]

For multiclass classification, we use the cross entropy loss:

def loss(parameters, inpt, targets):
 predictions = predict(parameters, inpt)
 loss = -np.log(predictions) * targets
 return loss.sum(axis=1).mean()

Gradient-based optimization requires not only the loss but also the
first derivative with respect to the parameters.
That gradient function has to return the gradients aligned with the parameters,
which is why we concatenate them into a big array after we flattened out the
weight matrix:

def d_loss_wrt_pars(parameters, inpt, targets):
 p = predict(parameters, inpt)
 g_w = np.dot(inpt.T, p - targets) / inpt.shape[0]
 g_b = (p - targets).mean(axis=0)
 return np.concatenate([g_w.flatten(), g_b])

Although this implementation can be optimized with no doubt, it suffices for this
tutorial.

An Array for the Parameters

First we will need to allocate a region of memory where our parameters live.
Climin tries to allocate as little additional memory as possible and will thus
work inplace most of the time. After each optimization iteration, the current
solution will always be in the array we created. This lets the user control as
much as possible. We create an empty array for our solution:

import numpy as np
wrt = np.empty(7850)

where the 7850 refers to the dimensionality of our problem. We picked this
number because we will be tackling the MNIST data set. It makes sense to
initialize the parameters randomly (depending on the problem), even though the
convexity of logistic regressions guarantees that we will always find the
minimum. Climin offers convenience functions in its initialize module:

import climin.initialize
climin.initialize.randomize_normal(wrt, 0, 1)

This will populated the parameters with values drawn from
a standard normal dostribution.

Using data

Now that we have set up our model and loss and initialized the parameters,
we need to manage the data.

In climin, we will always look at streams of data. Even if we do batch
learning (as we do here), the recommended way of doing so is a repeating stream
of the same data. How does that stream look? In Python, we have a convenient
data structure which is the iterator. It can be thought of as a lazy list of
infinite length.

The climin API expects that the loss function (and the gradient function) will
accept the parameter array as the first argument. All further arguments can be
as the user wants. When we initialize an optimizer, a keyword argument args
can be specified. This is expected to be an iterator which yields pairs of
(a, kw) which are then passed to the loss as
f(parameters, *a, **kw) and fprime(parameters, *a, *kw) in case of the
derivative.

We will be using the MNIST data set , which can be downloaded from
here [http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz].
We will first load it and convert the target variables to a one-of-k representation,
which is what our loss functions expect:

You can get this at http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz

datafile = 'mnist.pkl.gz'
Load data.
with gzip.open(datafile,'rb') as f:
 train_set, val_set, test_set = cPickle.load(f)

X, Z = train_set
VX, VZ = val_set
TX, TZ = test_set

def one_hot(arr):
 result = np.zeros((arr.shape[0], 10))
 result[xrange(arr.shape[0]), arr] = 1.
 return result

Z = one_hot(Z)
VZ = one_hot(VZ)
TZ = one_hot(TZ)

To create our data stream, we will just repeat the training data (X, Z):

import itertools
args = itertools.repeat(([X, Z], {}))

This certainly seems like overkill for logistic regression. Yet, even this
simple model can often be sped up by estimating the gradients on “mini
batches”. Going even further, you might want to have a continuous stream that
is read from the network, a data set that does not fit into RAM or which you
want to transform on the fly. All these things can be elegantly implemented
with iterators.

Creating an Optimizer

Now that we have set everything up, we are ready to create our first
optimizer, a GradientDescent object:

import climin
opt = climin.GradientDescent(wrt, d_loss_wrt_pars, step_rate=0.1, momentum=.95, args=args)

We created a new object called opt. For initialization, we passed it
several parameters:

	The parameters wrt. This will always be the first argument to any
optimizer in climin.

	The derivative d_loss_wrt_pars; we do not need loss itself for
gradient descent.

	A scalar to multiply the negative gradient with for the next search step,
step_rate. This parameter is often referred to as learning rate in the
literature.

	A momentum term momentum to speed up learning.

	Our data stream args.

The parameters wrt and args are consistent over optimizers. All others
may vary wildly, according to what an optimizer expects.

Optimization as Iteration

Many optimization algorithms are iterative and so are all in climin. To
transfer this metaphor into programming code, optimization with climin is as
simple as iterating over our optimizer object:

for i in opt: # Infinite loop!
 pass

This will result in an infinite loop. Climin does not handle stopping from
within optimizer objects; instead, you will have to do it manually, since you
know it much better. Let’s iterate for a fixed number of iterations, say 100:

print loss(wrt, VX, VZ) # prints something like 2.49771627484
for info in opt:
 if info['n_iter'] >= 100:
 break
print loss(wrt, VX, VZ) # prints something like 0.324243334583

When we iteratore over the optimizer, we iterate over dictionaries. Each
of these contains various information about the current state of the
optimizer. The exact contents depend on the optimizer, but might contain
the last step, gradient, etc. Here, we check the number of iterations that
have already been performed.

Using different optimizers

The whole point of climin is to use different optimizers. How that goes, we will
explain now.
We have already seen Gradient Descent. Furthermore, there are Quasi-Newton (BFGS, L-BFGS), Conjugate Gradients,
Resilient Propagation and rmsprop. Let’s see how we can use each of them.

L-BFGS, RPROP and nonlinear conjugate Gradients all have the benefit that they
work reasonably well without too much tuning of their hyper parameters. We can
thus construct optimizers like this:

ncg = climin.NonlinearConjugateGradient(wrt, loss, d_loss_wrt_pars, args=args)
lbfgs = climin.Lbfgs(wrt, loss, d_loss_wrt_pars, args=args)
rprop = climin.Rprop(wrt, d_loss_wrt_pars, args=args)
rmsprop = climin.RmsProp(wrt, d_loss_wrt_pars, steprate=1e-4, decay=0.9, args=args)

As you can see, we now need to specify the loss function itself in case of
Lbfgs and NonlinearConjugateGradient. That is because both utilize a
line search after finding a search direction.
climin.RmsProp has more hyper parameters and needs more fine grained tuning.
Yet, climin.GradientDescent and climin.RmsProp work naturally with so a
stochastic estimate of the objective and work very well with mini batches. For
more details, see Advanced data handling.

Conclusion and Next Steps

This tutorial explained the basic functionality of climin. There is a lot
more to explore to fully leverage the functionality of this library. Check the
table of contents and the examples directory of your climin checkout.

 Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	climin 0.1 documentation

Dealing with parameters

Parameters in climin are a long and one dimensional array. This might seem as
a restriction at first, yet it makes things easier in other places. Consider a
model involving complicated array dimensionalities; now consider how higher
order derivatives of those might look like. Yes that’s right, a pretty messy
thing. Furthermore, letting paramters occupy consecutive regions of memory has
further advantages from an implementation point of view. We can easier write it
to disk, randomize its contents or similar things.

Creating parameter sets

Creating of parameter arrays need not be tedious, though. Climin comes with a
nice convenience function, climin.util.empty_with_views which does most of the
work. You just need to feed it the shapes of parameters you are interested in.

Let us use logistic regressiom from the Tutorial and see where it comes in
handy. First, we will create a parameter array and the various views according
to a template:

import numpy as np
import climin.util

tmpl = [(784, 10), 10] # w is matrix and b a vector
flat, (w, b) = climin.util.empty_with_views(tmpl)

Now, flat is a one dimensional array. w and b are a two dimensional
and a one dimensional array respectively. They share memory with flat, so
any change we will do in w or b will be reflected in flat and vice
versa. In order for a predict function to get the parameters out of the flat
array, there is climin.util.shaped_from_flat which does the same job as
empty_with_views, except that it receives flat and does not create it.
In fact, the latter uses the former internally.

Let’s adapt the predict function to use w and b instead:

def predict(parameters, inpt):
 w, b = climin.util.shaped_from_flat(parameters, tmpl)
 before_softmax = np.dot(inpt, w) + b
 softmaxed = np.exp(before_softmax - before_softmax.max(axis=1)[:, np.newaxis])
 return softmaxed / softmaxed.sum(axis=1)[:, np.newaxis]

This might seem like overkill for logistic regression, but becomes invaluable
when complicated models with many different parameters are used.

Calculating derivatives in place

When calculating derivatives, you can make use of this as well–which is
important because climin expects derivatives to be flat as well, nicely aligned
with the parameter array:

def f_d_loss_wrt_pars(parameters, inpt, targets):
 p = predict(parameters, inpt)
 d_flat, d_w, d_b = climin.util.empty_with_views(tmpl)
 d_w[...] = np.dot(inpt.T, p - targets) / inpt.shape[0]
 d_b[...] = (p - targets).mean(axis=0)
 return d_flat

What are we doing here? First, we get ourselves a new array and preshaped views
on it in the same way as the parameters. Then we overwrite the views in place
with the derivatives and finally return the flat array as a result.
The in place assignment is important. If we did it using d_w = ..., Python
would just reassign the name and the changes would not turn up in d_flat.

As a further note, np.dot supports an extra argument out which specifies
where to write the result. To safe memory, we could perform the following
instead:

np.dot(inpt.T, p - targets, out=d_w)
d_w /= inpt.shape[0]

Initializing parameters

Initializing parameters with empty values is asking for trouble. You probably
want to populate an array with random numbers or zeros. Of course it is easy to
do so by hand:

flat[...] = np.random.normal(0, 0.1, flat.shape)

We found this quite tedious to write though; especially as soon as flat becomes
the field of a nested object. Thus, we have a short hand in the initialize
module which does exaclty that:

import climin.initialize
climin.initialize.randomize_normal(flat, 0, 0.1)

There are more functions to do similar things. Check out Initialization of Parameters.

 Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	climin 0.1 documentation

Advanced data handling

We have already seen how to use batch learning in the Tutorial. The use
of itertools.repeat to handle simple batch learning seemed rather over
expressive; it makes more sense if we consider more advanced use cases.

Mini batches

Consider the case where we do not want to calculcate the full gradient in each
iteration but estimate it given a mini batch. The contract of climin is that
each item of the args iterator will be used in a single iteration and thus
for one parameter update. The way to enable mini batch learning is thus to
provide an args argument which is an infinite list of mini batches.

Let’s revisit our example of logistic regression. Here, we created the args
iterator using itertools.repeat on the same array again and again:

import itertools
args = itertools.repeat(([X, Z], {}))

What we want to do now is to have an infinite stream of slices of X and
Z. How do we access the n’th batch of X and Z? We offer you a
convenience function that will give you random (with or without replacement)
slices from a container:

batch_size = 100
args = ((i, {}) for i in climin.util.iter_minibatches([train_set_x, train_set_y], batch_size, [0, 0]))

The last argument, [0, 0] gives the axes along which to slice [X, Z].
In some cases, samples might be aligned along axis 0 for the input, but
along axis 1 in the target data.

External memory

What is nice about climin.util.iter_minibatches is that it needs only slices
as a requirement for its arguments. We therefore only need to pass it a data
structure which reads data from disk as soon as it is needed and disposes of it
as soon as it is not any more.

HDF5 and its python package h5py [http://www.h5py.org/] are a perfect match
for this. We have managed to use 6+ GB sized image data sets on GPUs with less
than 2 GB of RAM with this simple recipe:

import climin.util
import gnumpy
import h5py

f = h5py.File('data.h5')
ds = f['inpts']
args = climin.util.iter_minibatches([ds], 100, [0])
args = (gnumpy.garray(i) for i in args)

...

This is in general not restricted by the size of the data set; it just show that
going beyond the GPU RAM limit is achieved very naturally in climin.

Further usages

This architecture can be exploited in many different ways. E.g., a stream over
a network can be directly used. A single pass over a file without keeping more
than necessary is another option.

 Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	climin 0.1 documentation

Interrupting and Resuming via Checkpoints

It is important to be able to interrupt optimization and continue right from
where you left off. Reasons include scheduling on shared resources, branching
the optimization with different settings or securing yourself against crashes
in long-running processes.

Note

Currently, this is not supported by all optimizers. It is the case for gradient
descent, rmsprop, adadelta and rprop.

Climin makes this in parts possible and leaves the responsibility to the user in
other parts. More specifically, the user has to take over the serialization of
the parameter vector (i.e. wrt), the objective function and its derivatives
(e.g. fprime) and the data (i.e. args). The reason for this is that
one cannot build a generic procedure for this. The data might be depending
on an open file descriptor and only a subset of Python functions can be
serialized, which is those that are defined at the top level.

Saving the state to disk (or somewhere else)

The idea is that the info dictionary which is the result of each
optimization step carries all the information necesseray to resume. Thus a
recipe to write your state to disk is as follows.

import numpy as np
import cPickle
from climin.gd import Gradient Descent

pars = make_pars()
fprime = make_fprime()
data = make_data()
opt = GradientDescent(pars, fprime, args=data)
for info in opt:
 with open('state.pkl', 'w') as fp:
 cPickle.dump(info, fp)
 np.savetxt('parameters.csv', pars)

This snippet first generates the necessery quantities from library functions
which we assume given. We then create a GradientDescent object over which we
iterate to optimize. In each iteration, we pickle the info dictionary to disk.

Note

Pickling an info dictionary directly to disk might be a bad idea in
many cases. E.g. it will contain the current data element or a gnumpy
array, which is not picklable. It is the users’s responsibility to
take care of that.

Loading the state from disk

We will now load the info dictionary from file, create an optimizer object an
initialize it with values from the info dictionary.

import numpy as np
import cPickle
from climin.gd import Gradient Descent

pars = np.loadtxt('parameters.csv')
fprime = make_fprime()
data = make_data()
with open('state.pkl') as fp:
 info = cPickle.load(fp)

opt = GradientDescent(pars, fprime, args=data)
opt.set_from_info(info)

We can continue optimization right from where we left off.

 Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	climin 0.1 documentation

Gradient Descent

This module provides an implementation of gradient descent.

	
class climin.gd.GradientDescent(wrt, fprime, step_rate=0.1, momentum=0.0, momentum_type='standard', args=None)

	Classic gradient descent optimizer.

Gradient descent works by iteratively performing updates solely based on
the first derivative of a problem. The gradient is calculated and multiplied
with a scalar (or component wise with a vector) to do a step in the problem
space. For speed ups, a technique called “momentum” is often used, which
averages search steps over iterations.

Even though gradient descent is pretty simple it can be very effective if
well tuned (in terms of its hyper parameters step rate and momentum).
Sometimes the use of schedules for both parameters is necessary. See
climin.schedule for basic schedules.

Gradient descent is also very robust to stochasticity in the objective
function. This might result from noise injected into it (e.g. in the case
of denoising auto encoders) or because it is based on data samples (e.g. in
the case of stochastic mini batches.)

Given a step rate \(\alpha\) and a function \(f'\) to evaluate the
search direction the current paramters \(\theta_t\) the following
update is performed:

\[\begin{split}v_{t+1} &= \alpha f'(\theta_t) \\
\theta_{t+1} &= \theta_t - v_{t+1}.\end{split}\]

If we also have a momentum \(\beta\) and are using standard momentum,
we update the parameters according to:

\[\begin{split}v_{t+1} &= \alpha f'(\theta_t) + \beta v_{t} \\
\theta_{t+1} &= \theta_t - v_{t+1}\end{split}\]

In some cases (e.g. learning the parameters of deep networks), using
Nesterov momentum can be beneficial. In this case, we first make a momentum
step and then evaluate the gradient at the location in between. Thus,
there is an additional cost of an addition of the parameters.

\[\begin{split}\theta_{t+{1 \over 2}} &= \theta_t - \beta v_t \\
v_{t+1} &= \alpha f'(\theta_{t + {1 \over 2}}) \\
\theta_{t+1} &= \theta_t - v_{t+1}\end{split}\]

which can be specified additionally by the initialization argument
momentum_type.

Note

Works with gnumpy.

Attributes

	wrt
	(array_like) Current solution to the problem. Can be given as a first argument to .fprime.

	fprime
	(Callable) First derivative of the objective function. Returns an array of the same shape as .wrt.

	step_rate
	(float or array_like) Step rate to multiply the gradients with.

	momentum
	(float or array_like) Momentum to multiply previous steps with.

	momentum_type
	(string (either “standard” or “nesterov”)) When to add the momentum term to the parameter vector; in the first case it will be done after the calculation of the gradient, in the latter before.

Methods

	
__init__(wrt, fprime, step_rate=0.1, momentum=0.0, momentum_type='standard', args=None)

	Create a GradientDescent object.

	Parameters:	wrt : array_like

Array that represents the solution. Will be operated upon in
place. fprime should accept this array as a first argument.

fprime : callable

Callable that given a solution vector as first parameter and *args
and **kwargs drawn from the iterations args returns a
search direction, such as a gradient.

step_rate : float or array_like, or iterable of that

Step rate to use during optimization. Can be given as a single
scalar value or as an array for a different step rate of each
parameter of the problem.

Can also be given as an iterator; in that case, every iteration
of the optimization takes a new element as a step rate from that
iterator.

momentum : float or array_like, or iterable of that

Momentum to use during optimization. Can be specified analoguously
(but independent of) step rate.

momentum_type : string (either “standard” or “nesterov”)

When to add the momentum term to the paramter vector; in the first
case it will be done after the calculation of the gradient, in the
latter before.

args : iterable

Iterator of arguments which fprime will be called
with.

 Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	climin 0.1 documentation

rmsprop

This module provides an implementation of rmsprop.

	
class climin.rmsprop.RmsProp(wrt, fprime, step_rate, decay=0.9, momentum=0, step_adapt=False, step_rate_min=0, step_rate_max=inf, args=None)

	RmsProp optimizer.

RmsProp [tieleman2012rmsprop] is an optimizer that utilizes the magnitude
of recent gradients to normalize the gradients. We always keep a moving
average over the root mean squared (hence Rms) gradients, by which we
divide the current gradient. Let \(f'(\theta_t)\) be the derivative of
the loss with respect to the parameters at time step \(t\). In its
basic form, given a step rate \(\alpha\) and a decay term
\(\gamma\) we perform the following updates:

\[\begin{split}r_t &=& (1 - \gamma)~f'(\theta_t)^2 + \gamma r_{t-1} , \\
v_{t+1} &=& {\alpha \over \sqrt{r_t}} f'(\theta_t), \\
\theta_{t+1} &=& \theta_t - v_{t+1}.\end{split}\]

In some cases, adding a momentum term \(\beta\) is beneficial. Here,
Nesterov momentum is used:

\[\begin{split}\theta_{t+{1 \over 2}} &=& \theta_t - \beta v_t, \\
r_t &=& (1 - \gamma)~f'(\theta_{t + {1 \over 2}})^2 + \gamma r_{t-1}, \\
v_{t+1} &=& \beta v_t + {\alpha \over \sqrt{r_t}} f'(\theta_{t + {1 \over 2}}), \\
\theta_{t+1} &=& \theta_t - v_{t+1}\end{split}\]

Additionally, this implementation has adaptable step rates. As soon as the
components of the step and the momentum point into the same direction (thus
have the same sign) the step rate for that parameter is multiplied with
1 + step_adapt. Otherwise, it is multiplied with 1 - step_adapt.
In any way, the minimum and maximum step rates step_rate_min and
step_rate_max are respected and exceeding values truncated to it.

RmsProp has several advantages; for one, it is a very robust optimizer which
has pseudo curvature information. Additionally, it can deal with stochastic
objectives very nicely, making it applicable to mini batch learning.

Note

Works with gnumpy.

	[tieleman2012rmsprop]	Tieleman, T. and Hinton, G. (2012),
Lecture 6.5 - rmsprop, COURSERA: Neural Networks for Machine Learning

Attributes

	wrt
	(array_like) Current solution to the problem. Can be given as a first argument to .fprime.

	fprime
	(Callable) First derivative of the objective function. Returns an array of the same shape as .wrt.

	step_rate
	(float or array_like) Step rate of the optimizer. If an array, means that per parameter step rates are used.

	momentum
	(float or array_like) Momentum of the optimizer. If an array, means that per parameter momentums are used.

	step_adapt
	(float or bool) Constant to adapt step rates. If False, step rate adaption is not done.

	step_rate_min
	(float, optional, default 0) When adapting step rates, do not move below this value.

	step_rate_max
	(float, optional, default inf) When adapting step rates, do not move above this value.

Methods

	
__init__(wrt, fprime, step_rate, decay=0.9, momentum=0, step_adapt=False, step_rate_min=0, step_rate_max=inf, args=None)

	Create an RmsProp object.

	Parameters:	wrt : array_like

Array that represents the solution. Will be operated upon in
place. fprime should accept this array as a first argument.

fprime : callable

Callable that given a solution vector as first parameter and *args
and **kwargs drawn from the iterations args returns a
search direction, such as a gradient.

step_rate : float or array_like

Step rate to use during optimization. Can be given as a single
scalar value or as an array for a different step rate of each
parameter of the problem.

decay : float

Decay parameter for the moving average. Must lie in [0, 1) where
lower numbers means a shorter “memory”.

momentum : float or array_like

Momentum to use during optimization. Can be specified analoguously
(but independent of) step rate.

step_adapt : float or bool

Constant to adapt step rates. If False, step rate adaption is not done.

step_rate_min : float, optional, default 0

When adapting step rates, do not move below this value.

step_rate_max : float, optional, default inf

When adapting step rates, do not move above this value.

args : iterable

Iterator over arguments which fprime will be called with.

 Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	climin 0.1 documentation

Adadelta

This module provides an implementation of adadelta.

	
class climin.adadelta.Adadelta(wrt, fprime, step_rate=1, decay=0.9, momentum=0, offset=0.0001, args=None)

	Adadelta optimizer.

Adadelta [zeiler2013adadelta] is a method that uses the magnitude of recent
gradients and steps to obtain an adaptive step rate. An exponential moving
average over the gradients and steps is kept; a scale of the learning rate
is then obtained by their ration.

Let \(f'(\theta_t)\) be the derivative of the loss with respect to the
parameters at time step \(t\). In its
basic form, given a step rate \(\alpha\), a decay term
\(\gamma\) and an offset \(\epsilon\) we perform the following
updates:

\[\begin{split}g_t &=& (1 - \gamma)~f'(\theta_t)^2 + \gamma g_{t-1}\end{split}\]

where \(g_0 = 0\). Let \(s_0 = 0\) for updating the parameters:

\[\begin{split}\Delta \theta_t &=& \alpha {\sqrt{s_{t-1} + \epsilon} \over \sqrt{g_t + \epsilon}}~f'(\theta_t), \\
\theta_{t+1} &=& \theta_t - \Delta \theta_t.\end{split}\]

Subsequently we adapt the moving average of the steps:

\[\begin{split}s_t &=& (1 - \gamma)~\Delta\theta_t^2 + \gamma s_{t-1}.\end{split}\]

To extend this with Nesterov’s accelerated gradient, we need a momentum
coefficient \(\beta\) and incorporate it by using slightly different
formulas:

\[\begin{split}\theta_{t + {1 \over 2}} &=& \theta_t - \beta \Delta \theta_{t-1}, \\
g_t &=& (1 - \gamma)~f'(\theta_{t + {1 \over 2}})^2 + \gamma g_{t-1}, \\
\Delta \theta_t &=& \alpha {\sqrt{s_{t-1} + \epsilon} \over \sqrt{g_t + \epsilon}}~f'(\theta_{t + {1 \over 2}}).\end{split}\]

In its original formulation, the case \(\alpha = 1, \beta = 0\) was
considered only.

	[zeiler2013adadelta]	Zeiler, Matthew D.
“ADADELTA: An adaptive learning rate method.”
arXiv preprint arXiv:1212.5701 (2012).

Methods

	
__init__(wrt, fprime, step_rate=1, decay=0.9, momentum=0, offset=0.0001, args=None)

	Create an Adadelta object.

	Parameters:	wrt : array_like

Array that represents the solution. Will be operated upon in
place. fprime should accept this array as a first argument.

fprime : callable

Callable that given a solution vector as first parameter and *args
and **kwargs drawn from the iterations args returns a
search direction, such as a gradient.

step_rate : scalar or array_like, optional [default: 1]

Value to multiply steps with before they are applied to the
parameter vector.

decay : float, optional [default: 0.9]

Decay parameter for the moving average. Must lie in [0, 1) where
lower numbers means a shorter “memory”.

momentum : float or array_like, optional [default: 0]

Momentum to use during optimization. Can be specified analoguously
(but independent of) step rate.

offset : float, optional, [default: 1e-4]

Before taking the square root of the running averages, this offset
is added.

args : iterable

Iterator over arguments which fprime will be called with.

 Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	climin 0.1 documentation

Adam

This module provides an implementation of Adam.

	
class climin.adam.Adam(wrt, fprime, step_rate=0.0002, decay=None, decay_mom1=0.1, decay_mom2=0.001, momentum=0, offset=1e-08, args=None)

	Adaptive moment estimation optimizer. (Adam).

Adam is a method for the optimization of stochastic objective functions.

The idea is to estimate the first two moments with exponentially decaying
running averages. Additionally, these estimates are bias corrected which
improves over the initial learning steps since both estimates are
initialized with zeros.

The rest of the documentation follows the original paper [adam2014] and is
only meant as a quick primer. We refer to the original source for more
details, such as results on convergence and discussion of the various hyper
parameters.

Let \(f_t'(\theta_t)\) be the derivative of the loss with respect to
the parameters at time step \(t\). In its
basic form, given a step rate \(\alpha\), decay terms \(\beta_1\)
and \(\beta_2\) for the first and second moment estimates respectively
and an offset \(\epsilon\) we initialise the following quantities

\[\begin{split}m_0 & \leftarrow 0 \\
v_0 & \leftarrow 0 \\
t & \leftarrow 0 \\\end{split}\]

and perform the following updates:

\[\begin{split}t & \leftarrow t + 1 \\
g_t & \leftarrow f_t'(\theta_{t-1}) \\
m_t & \leftarrow \beta_1 \cdot g_t + (1 - \beta_1) \cdot m_{t-1} \\
v_t &\leftarrow \beta_2 \cdot g_t^2 + (1 - \beta_2) \cdot v_{t-1}\end{split}\]\[\begin{split}\hat{m}_t &\leftarrow {m_t \over (1 - (1 - \beta_1)^t)} \\
\hat{v}_t &\leftarrow {v_t \over (1 - (1 - \beta_2)^t)} \\
\theta_t &\leftarrow \theta_{t-1} - \alpha {\hat{m}_t \over (\sqrt{\hat{v}_t} + \epsilon)}\end{split}\]

As suggested in the original paper, the last three steps are optimized for
efficieny by using:

\[\begin{split}\alpha_t &\leftarrow \alpha {\sqrt{(1 - (1 - \beta_2)^t)} \over (1 - (1 - \beta_1)^t)} \\
\theta_t &\leftarrow \theta_{t-1} - \alpha_t {m_t \over (\sqrt{v_t} + \epsilon)}\end{split}\]

The quantities in the algorithm and their corresponding attributes in the
optimizer object are as follows.

	Symbol
	Attribute
	Meaning

	\(t\)
	n_iter
	Number of iterations, starting at 0.

	\(m_t\)
	est_mom_1_b
	Biased estimate of first moment.

	\(v_t\)
	est_mom_2_b
	Biased estimate of second moment.

	\(\hat{m}_t\)
	est_mom_1
	Unbiased estimate of first moment.

	\(\hat{v}_t\)
	est_mom_2
	Unbiased estimate of second moment.

	\(\alpha\)
	step_rate
	Step rate parameter.

	\(\beta_1\)
	decay_mom1
	Exponential decay parameter for first moment estimate.

	\(\beta_2\)
	decay_mom2
	Exponential decay parameter for second moment estimate.

	\(\epsilon\)
	offset
	Safety offset for division by estimate of second moment.

Additionally, using Nesterov momentum is possible by setting the momentum
attribute of the optimizer to a value other than 0. We apply the momentum
step before computing the gradient, resulting in a similar incorporation of
Nesterov momentum in Adam as presented in [nadam2015].

Note

The use of decay parameters \(\beta_1\) and \(\beta_2\) differs
from the definition in the original paper [adam2014]:
With \(\beta^{\ast}_i\) referring to the parameters as defined in
the paper, we use \(\beta_i\) with \(\beta_i = 1 - \beta^{\ast}_i\)

	[adam2014]	(1, 2) Kingma, Diederik, and Jimmy Ba.
“Adam: A Method for Stochastic Optimization.”
arXiv preprint arXiv:1412.6980 (2014).

	[nadam2015]	Dozat, Timothy
“Incorporating Nesterov Momentum into Adam.”
Stanford University, Tech. Rep (2015).

Methods

	
__init__(wrt, fprime, step_rate=0.0002, decay=None, decay_mom1=0.1, decay_mom2=0.001, momentum=0, offset=1e-08, args=None)

	Create an Adam object.

	Parameters:	wrt : array_like

Array that represents the solution. Will be operated upon in
place. fprime should accept this array as a first argument.

fprime : callable

Callable that given a solution vector as first parameter and *args
and **kwargs drawn from the iterations args returns a
search direction, such as a gradient.

step_rate : scalar or array_like, optional [default: 1]

Value to multiply steps with before they are applied to the
parameter vector.

decay_mom1 : float, optional, [default: 0.1]

Decay parameter for the exponential moving average estimate of the
first moment.

decay_mom2 : float, optional, [default: 0.001]

Decay parameter for the exponential moving average estimate of the
second moment.

momentum : float or array_like, optional [default: 0]

Momentum to use during optimization. Can be specified analogously
(but independent of) step rate.

offset : float, optional, [default: 1e-8]

Before taking the square root of the running averages, this offset
is added.

args : iterable

Iterator over arguments which fprime will be called with.

 Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	climin 0.1 documentation

Resilient Propagation

This module contains the Resilient propagation optimizer.

	
class climin.rprop.Rprop(wrt, fprime, step_shrink=0.5, step_grow=1.2, min_step=1e-06, max_step=1, changes_max=0.1, args=None)

	Rprop optimizer.

Resilient propagation is an optimizer that was originally tailored towards
neural networks. It can however be savely applied to all kinds of
optimization problems. The idea is to have a parameter specific step rate
which is determined by sign changes of the derivative of the objective
function.

To be more precise, given the derivative of the loss given the parameters
\(f'(\theta_t)\) at time step \(t\), the \(i\) th component of
the vector of steprates \(\alpha\) is determined as

\[\begin{split}\alpha_i \leftarrow
\begin{cases}
 \alpha_i \cdot \eta_{\text{grow}} ~\text{if}~ f'(\theta_t)_i \cdot f'(\theta_{t-1})_i > 0 \\
 \alpha_i \cdot \eta_{\text{shrink}} ~\text{if}~ f'(\theta_t)_i \cdot f'(\theta_{t-1})_i < 0 \\
 \alpha_i
\end{cases}\end{split}\]

where \(0 < \eta_{\text{shrink}} < 1 < \eta_{\text{grow}}\)
specifies the shrink and growth rates of the step rates. Typically, we will
threshold the step rates at minimum and maximum values.

The parameters are then adapted according to the sign of the error gradient:

\[\theta_{t+1} = -\alpha~\text{sgn}(f'(\theta_t)).\]

This results in a method which is quite robust. On the other hand, it is
more sensitive towards stochastic objectives, since that stochasticity might
lead to bad estimates of the sign of the gradient.

Note

Works with gnumpy.

	[riedmiller1992rprop]	M. Riedmiller und Heinrich Braun: Rprop - A Fast
Adaptive Learning Algorithm. Proceedings of the International Symposium
on Computer and Information Science VII, 1992

Attributes

	wrt
	(array_like) Current solution to the problem. Can be given as a first argument to .fprime.

	fprime
	(Callable) First derivative of the objective function. Returns an array of the same shape as .wrt.

	step_shrink
	(float) Constant to shrink step rates by if the gradients of the error do not agree over time.

	step_grow
	(float) Constant to grow step rates by if the gradients of the error do agree over time.

	min_step
	(float) Minimum step rate.

	max_step
	(float) Maximum step rate.

Methods

	
__init__(wrt, fprime, step_shrink=0.5, step_grow=1.2, min_step=1e-06, max_step=1, changes_max=0.1, args=None)

	Create an Rprop object.

	Parameters:	wrt : array_like

Current solution to the problem. Can be given as a first argument
to .fprime.

fprime : Callable

First derivative of the objective function. Returns an array of the
same shape as .wrt.

step_shrink : float

Constant to shrink step rates by if the gradients of the error do
not agree over time.

step_grow : float

Constant to grow step rates by if the gradients of the error do
agree over time.

min_step : float

Minimum step rate.

max_step : float

Maximum step rate.

args : iterable

Iterator over arguments which fprime will be called with.

 Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	climin 0.1 documentation

Conjugate Gradients

Module containing functionality for conjugate gradients.

Conjugate gradients is motivated from a first order Taylor expansion of the
objective:

\[f(\theta_t + \alpha_t d_t) \approx f(\theta_t) + \alpha_td_t^Tf'(\theta_t).\]

To locally decrease the objective, it is optimal to set
\(d_t \propto -f'(\theta_t)\) and find \(\alpha_t\) with a line search
algorithm, which is known as steepest descent. Yet, a well known disadvantage
of this approach is that directions found at \(t\) will often interfere with
directions found for \(t' < t\).

The solution to this problem is to chose \(d_t\) in a way that it does not
interfere with previous updates. If the dimensions of our problem were
independent, we could just move along these dimensions. If they were independent
up to rotation, we would have to chose directions which are orthogonal to each
other. This is exactly the case when the Hessian of the problem, \(A\) is
diagonal. If it is not diagonal, we have to move along directions which are
called conjugate to each other with respect to the matrix \(A\).

The conjugate gradients algorithms provide methods to do so efficiently. The
linear conjugate gradients algorithm assumes that the objective is a quadratic
and can thus determine \(\alpha\) exactly. Nonlinear conjugate gradients
works on arbitrary functions (yet, the Taylor expansion assumption above has to
be reasonable). Since the Hessian \(A\) is not constant in this case, the
previous directions (to which a new direction has to be conjugate) have to be
reset from time to time. Additionally, we need to perform a line search to solve
for \(\alpha_t\).

	
class climin.cg.ConjugateGradient(wrt, H=None, b=None, f_Hp=None, min_grad=1e-14, precond=None)

	ConjugateGradient class.

Minimize a quadratic objective of the form

\[f(\theta) = {1 \over 2} \theta^TA\theta + \theta^Tb + c.\]

The minimization will take place by moving along conjugate directions of
steepest decrease in the error. This will take at most as many steps as
the dimensionality of the problem.

Note

In most cases it is better to use scipy.optimize.solve. Only use
this function if you want to monitor intermediate quantities and are
not entirely interested in optimization of a quadratic objective, but in
a different error measure. E.g. as in Hessian free optimization.

Attributes

	wrt
	(array_like) Parameters of the problem.

	H
	(array_like, 2 dimensional, square) Curvature term of the quadratic, the Hessian.

	b
	(array_like) Linear term of the quadratic.

	f_Hp
	(callable) Function to calculcate the dot product of a Hessian with an arbitrary vector.

	min_grad
	(float, optional, default: 1e-14) If all components of the gradient fall below this threshold, stop optimization.

	precond
	(array_like) Matrix to precondition the problem. If a vector, is taken to represent a diagonal matrix.

Methods

	
__init__(wrt, H=None, b=None, f_Hp=None, min_grad=1e-14, precond=None)

	Create a ConjugateGradient object.

	Parameters:	wrt : array_like

Parameters of the problem.

H : array_like, 2 dimensional, square

Curvature term of the quadratic, the Hessian.

b : array_like

Linear term of the quadratic.

f_Hp : callable

Function to calculcate the dot product of a Hessian with an
arbitrary vector.

min_grad : float, optional, default: 1e-14

If all components of the gradient fall below this threshold,
stop optimization.

precond : array_like

Matrix to precondition the problem. If a vector, is taken to
represent a diagonal matrix.

	
class climin.cg.NonlinearConjugateGradient(wrt, f, fprime, min_grad=1e-06, args=None)

	NonlinearConjugateGradient optimizer.

NCG minimizes functions by following directions which are conjugate to each
other with respect to the Hessian. Since the curvature changes if the
objective is nonquadratic, the Hessian will not be accurate and thus the
conjugacy of successive search directions as well. Furthermore, the optimal
step length cannot be found in closed form and has to be obtained with a
line search.

During optimization, we sometimes perform a restart. That means we give up
on trying to find conjugate directions and use the gradient as a new search
direction. This is done whenever two successive directions are far from
orthogonal, an indicator that the quadratic assumption is either inaccurate
or the Hessian has changed too much lately.

Attributes

	wrt
	(array_like) Array of parameters of the problem.

	f
	(callable) Objective function.

	fprime
	(callable) First derivative of the objective function.

	min_grad
	(float) If all components of the gradient fall below this value, stop minimization.

	line_search
	(LineSearch object.) Line search object to perform line searches with.

	args
	(iterable) Iterable of arguments passed on to the objective function and its derivatives.

Methods

	
__init__(wrt, f, fprime, min_grad=1e-06, args=None)

	Create a NonlinearConjugateGradient object.

	Parameters:	wrt : array_like

Array of parameters of the problem.

f : callable

Objective function.

fprime : callable

First derivative of the objective function.

min_grad : float

If all components of the gradient fall below this value, stop
minimization.

args : iterable, optional

Iterable of arguments passed on to the objective function and its
derivatives.

 Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	climin 0.1 documentation

Quasi-Newton (BFGS, L-BFGS)

This module provides an implementation of Quasi-Newton methods
(BFGS, sBFGS and l-BFGS).

The Taylor expansion up to second order of a function \(f(\theta_t)\)
allows a local quadratic approximiation of \(f(\theta_t + d_t)\):

\[f(\theta_t + d_t) \approx f(\theta_t) + d_t^Tf'(\theta_t) + \frac{1}{2}d_t^TH_td_t\]

where the symmetric positive definite matrix \(H_t\) is the Hessian at \(\theta_t\).
The minimizer \(d_t\) of this convex quadratic model is:

\[d_t = -H^{-1}f'(\theta_t).\]

For large scale problems both computing/storing the Hessian and solving the above linear
system is computationally demanding. Instead of recomputing the Hessian from scratch at every
iteration, quasi-Newton methods utilize successive measurements of the gradient
to build a sufficiently good quadratic model of the objective function. The above formula
is then applied to yield a direction \(d_t\). The update done is then of the form

\[\theta_{t+1} = \alpha_t d_t + \theta_t\]

where \(\alpha_t\) is obtained with a line search.

Note

The classes presented here are not working with gnumpy.

	
class climin.bfgs.Bfgs(wrt, f, fprime, initial_inv_hessian=None, line_search=None, args=None)

	BFGS (Broyden-Fletcher-Goldfarb-Shanno) is one of the most well-knwon
quasi-Newton methods. The main idea is to iteratively construct an approximate inverse
Hessian \(B^{-1}_t\) by a rank-2 update:

\[B^{-1}_{t+1} = B^{-1}_t + (1 + \frac{y_t^TB^{-1}_ty_t}{y_t^Ts_t})\frac{s_ts_t^T}{s_t^Ty_t} - \frac{s_ty_t^TB^{-1}_t + B^{-1}_ty_ts_t^T}{s_t^Ty_t},\]

where \(y_t = f(\theta_{t+1}) - f(\theta_{t})\) and \(s_t = \theta_{t+1} - \theta_t\).

The storage requirements for BFGS scale quadratically with the number of
variables. For detailed derivations, see [nocedal2006a], chapter 6.

	[nocedal2006a]	(1, 2) Nocedal, J. and Wright, S. (2006),
Numerical Optimization, 2nd edition, Springer.

Attributes

	wrt
	(array_like) Current solution to the problem. Can be given as a first argument to .f and .fprime.

	f
	(Callable) The object function.

	fprime
	(Callable) First derivative of the objective function. Returns an array of the same shape as .wrt.

	initial_inv_hessian
	(array_like) The initial estimate of the approximiate Hessian.

	line_search
	(LineSearch object.) Line search object to perform line searches with.

	args
	(iterable) Iterator over arguments which fprime will be called with.

Methods

	
__init__(wrt, f, fprime, initial_inv_hessian=None, line_search=None, args=None)

	Create a BFGS object.

	Parameters:	wrt : array_like

Array that represents the solution. Will be operated upon in
place. f and fprime should accept this array as a first argument.

f : callable

The objective function.

fprime : callable

Callable that given a solution vector as first parameter and *args
and **kwargs drawn from the iterations args returns a
search direction, such as a gradient.

initial_inv_hessian : array_like

The initial estimate of the approximiate Hessian.

line_search : LineSearch object.

Line search object to perform line searches with.

args : iterable

Iterator over arguments which fprime will be called with.

	
class climin.bfgs.Lbfgs(wrt, f, fprime, initial_hessian_diag=1, n_factors=10, line_search=None, args=None)

	l-BFGS (limited-memory BFGS) is a limited memory variation of the well-known
BFGS algorithm. The storage requirement for BFGS scale quadratically with the number of variables,
and thus it tends to be used only for smaller problems. Limited-memory BFGS reduces the
storage by only using the \(l\) latest updates (factors) in computing the approximate Hessian inverse
and representing this approximation only implicitly. More specifically, it stores the last
\(l\) BFGS update vectors \(y_t\) and \(s_t\) and uses these to implicitly perform
the matrix operations of BFGS (see [nocedal2006a]).

Note

In order to handle simple box constraints, consider scipy.optimize.fmin_l_bfgs_b.

Attributes

	wrt
	(array_like) Current solution to the problem. Can be given as a first argument to .f and .fprime.

	f
	(Callable) The object function.

	fprime
	(Callable) First derivative of the objective function. Returns an array of the same shape as .wrt.

	initial_hessian_diag
	(array_like) The initial estimate of the diagonal of the Hessian.

	n_factors
	(int) The number of factors that should be used to implicitly represent the inverse Hessian.

	line_search
	(LineSearch object.) Line search object to perform line searches with.

	args
	(iterable) Iterator over arguments which fprime will be called with.

Methods

	
__init__(wrt, f, fprime, initial_hessian_diag=1, n_factors=10, line_search=None, args=None)

	Create an Lbfgs object.

Attributes

	wrt
	(array_like) Current solution to the problem. Can be given as a first argument to .f and .fprime.

	f
	(Callable) The object function.

	fprime
	(Callable) First derivative of the objective function. Returns an array of the same shape as .wrt.

	initial_hessian_diag
	(array_like) The initial estimate of the diagonal of the Hessian.

	n_factors
	(int) The number of factors that should be used to implicitly represent the inverse Hessian.

	line_search
	(LineSearch object.) Line search object to perform line searches with.

	args
	(iterable) Iterator over arguments which fprime will be called with.

 Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	climin 0.1 documentation

Schedules

This module holds various schedules for parameters such as the step
rate or momentum for gradient descent.

A schedule is implemented as an iterator. This allows it to have iterators
of infinite length. It also makes it possible to manipulate scheduls with
the itertools python module, e.g. for chaining iterators.

	
climin.schedule.decaying(start, decay)

	Return an iterator of exponentially decaying values.

The first value is start. Every further value is obtained by multiplying
the last one by a factor of decay.

Examples

>>> from climin.schedule import decaying
>>> s = decaying(10, .9)
>>> [next(s) for i in range(5)]
[10.0, 9.0, 8.100000000000001, 7.290000000000001, 6.561]

	
climin.schedule.linear_annealing(start, stop, n_steps)

	Return an iterator that anneals linearly to a point linearly.

The first value is start, the last value is stop. The annealing will
be linear over n_steps iterations. After that, stop is yielded.

Examples

>>> from climin.schedule import linear_annealing
>>> s = linear_annealing(1, 0, 4)
>>> [next(s) for i in range(10)]
[1.0, 0.75, 0.5, 0.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

	
climin.schedule.repeater(iter, n)

	Return an iterator that repeats each element of iter exactly
n times before moving on to the next element.

Examples

>>> from climin.schedule import repeater
>>> s = repeater([1, 2, 3], 2)
>>> [next(s) for i in range(6)]
[1, 1, 2, 2, 3, 3]

	
class climin.schedule.SutskeverBlend(max_momentum, stretch=250)

	Class representing a schedule that step-wise increases from zero to a
maximum value, as described in [sutskever2013importance].

Examples

>>> from climin.schedule import SutskeverBlend
>>> s = iter(SutskeverBlend(0.9, 2))
>>> [next(s) for i in range(10)]
[0.5, 0.75, 0.75, 0.8333333333333333, 0.8333333333333333, 0.875, 0.875, 0.9, 0.9, 0.9]

	[sutskever2013importance]	On the importance of initialization and
momentum in deep learning, Sutskever et al (ICML 2013)

 Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	climin 0.1 documentation

Initialization of Parameters

Module that contains functionality to initialize parameters to starting
values.

	
climin.initialize.sparsify_columns(arr, n_non_zero, keep_diagonal=False, random_state=None)

	Set all but n_non_zero entries to zero for each column of arr.

This is a common technique to find better starting points for learning
deep and/or recurrent networks.

	Parameters:	arr : array_like, two dimensional

Array to work upon in place.

n_non_zero : integer

Amount of non zero entries to keep.

keep_diagonal : boolean, optional [default: False]

If set to True and arr is square, do keep the diagonal.

random_state : numpy.random.RandomState object, optional [default

If set, random number generator that will generate the indices
corresponding to the zero-valued columns.

Examples

>>> import numpy as np
>>> from climin.initialize import sparsify_columns
>>> arr = np.arange(9).reshape((3, 3))
>>> sparsify_columns(arr, 1)
>>> arr
array([[0, 0, 0],
 [0, 4, 5],
 [6, 0, 0]])

	
climin.initialize.bound_spectral_radius(arr, bound=1.2)

	Set the spectral radius of the square matrix arr to bound.

This is performed by scaling eigenvalues of arr.

	Parameters:	arr : array_like, two dimensional

Array to work upon in place.

bound : float, optional, default: 1.2

Examples

>>> import numpy as np
>>> from climin.initialize import bound_spectral_radius
>>> arr = np.arange(9).reshape((3, 3)).astype('float64')
>>> bound_spectral_radius(arr, 1.1)
>>> arr
array([[-7.86816957e-17, 8.98979486e-02, 1.79795897e-01],
 [2.69693846e-01, 3.59591794e-01, 4.49489743e-01],
 [5.39387691e-01, 6.29285640e-01, 7.19183588e-01]])

	
climin.initialize.randomize_normal(arr, loc=0, scale=1, random_state=None)

	Populate an array with random numbers from a normal distribution with
mean loc and standard deviation scale.

	Parameters:	arr : array_like

Array to work upon in place.

loc : float

Mean of the random numbers.

scale : float

Standard deviation of the random numbers.

random_state : np.random.RandomState object, optional [default

Random number generator that shall generate the random numbers.

Examples

>>> import numpy as np
>>> from climin.initialize import randomize_normal
>>> arr = np.empty((3, 3))
>>> randomize_normal(arr)
>>> arr
array([[0.18076413, 0.60880657, 1.20855691],
 [1.7799948 , -0.82565481, 0.53875307],
 [-0.67056028, -1.46257419, 1.17033425]])
>>> randomize_normal(arr, 10, 0.1)
>>> arr
array([[10.02221481, 10.0982449 , 10.02495358],
 [9.99867829, 9.99410111, 9.8242318],
 [9.9383779 , 9.94880091, 10.03179085]])

 Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	climin 0.1 documentation

Line searches

Module containing various line searches.

Line searches are at the heart of many optimizers. After finding a suitable
search direction (e.g. the steepest descent direction) we are left with a
one-dimensional optimization problem, which can then be solved by a line search.

	
class climin.linesearch.BackTrack(wrt, f, decay=0.9, max_iter=inf, tolerance=1e-20)

	Class implementing a back tracking line search.

The idea is to jump to a starting step length \(t\) and then shrink that
step length by multiplying it with \(\gamma\) until we improve upon
the loss.

At most max_iter attempts will be done. If the largest absolut value of
a component of the step falls below tolerance, we stop as well. In both
cases, a step length of 0 is returned.

To not possibly iterate forever, the field tolerance holds a small
value (1E-20 per default). As soon as the absolute value of every component
of the step (direction multiplied with the scalar from schedule) is less
than tolerance, we stop.

Attributes

	wrt
	(array_like) Parameters over which the optimization is done.

	f
	(Callable) Objective function.

	decay
	(float) Factor to multiply trials for the step length with.

	tolerance
	(float) Minimum absolute value of a component of the step without stopping the line search.

Methods

	
__init__(wrt, f, decay=0.9, max_iter=inf, tolerance=1e-20)

	Create BackTrack object.

	Parameters:	wrt : array_like

Parameters over which the optimization is done.

f : Callable

Objective function.

decay : float

Factor to multiply trials for the step length with.

max_iter : int, optional, default infinity

Number of step lengths to try.

tolerance : float

Minimum absolute value of a component of the step without stopping the
line search.

	
search(direction, initialization=1, args=None, kwargs=None, loss0=None)

	Return a step length t given a search direction.

Perform the line search along a direction. Search will start at
initialization and assume that the loss is loss0 at t == 0.

	Parameters:	direction : array_like

Has to be of the same size as .wrt. Points along that direction
will tried out to reduce the loss.

initialization : float

First attempt for a step size. Will be reduced by a factor of
.decay afterwards.

args : list, optional, default: None

list of optional arguments for .f.

kwargs : dictionary, optional, default: None

list of optional keyword arguments for .f.

loss0 : float, optional

Loss at the current parameters. Will be calculated of not given.

	
class climin.linesearch.StrongWolfeBackTrack(wrt, f, fprime, decay=None, c1=0.0001, c2=0.9, tolerance=1e-20)

	Class implementing a back tracking line search that finds points
satisfying the Strong Wolfe conditions.

The idea is to jump to a starting step length \(t\) and then shrink that
step length by multiplying it with \(\gamma\) until the strong Wolfe
conditions are satisfied. That is the Armijo rule

\[\begin{split}f(\theta_t+ \alpha_t d_t) & \leq f(\theta)+ c_1 \alpha_t d_t^T f'(\theta),\end{split}\]

and the curvature condition

\[\begin{split}\big|d_k^TTf('\theta_t+\alpha_t d_t)\big| & \leq c_2 \big|d_t^T f'(\theta_t)\big|.\end{split}\]

At most max_iter attempts will be done. If the largest absolut value of
a component of the step falls below tolerance, we stop as well. In both
cases, a step length of 0 is returned.

To not possibly iterate forever, the field tolerance holds a small
value (1E-20 per default). As soon as the absolute value of every component
of the step (direction multiplied with the scalar from schedule) is less
than tolerance, we stop.

Attributes

	wrt
	(array_like) Parameters over which the optimization is done.

	f
	(Callable) Objective function.

	decay
	(float) Factor to multiply trials for the step length with.

	tolerance
	(float) Minimum absolute value of a component of the step without stopping the line search.

	c1
	(float) Constant in the strong Wolfe conditions.

	c2
	(float) Constant in the strong Wolfe conditions.

Methods

	
__init__(wrt, f, fprime, decay=None, c1=0.0001, c2=0.9, tolerance=1e-20)

	Create StrongWolfeBackTrack object.

	Parameters:	wrt : array_like

Parameters over which the optimization is done.

f : Callable

Objective function.

decay : float

Factor to multiply trials for the step length with.

tolerance : float

Minimum absolute value of a component of the step without stopping
the line search.

	
class climin.linesearch.ScipyLineSearch(wrt, f, fprime)

	Wrapper around the scipy line search.

Methods

	
class climin.linesearch.WolfeLineSearch(wrt, f, fprime, c1=0.0001, c2=0.9, maxiter=25, min_step_length=1e-09, typ=4)

	Port of Mark Schmidt’s line search.

Methods

 Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	climin 0.1 documentation

Utility functions

	
climin.util.empty_with_views(shapes, empty_func=<built-in function empty>)

	Create an array and views shaped according to shapes.

The shapes parameter is a list of tuples of ints. Each tuple
represents a desired shape for an array which will be allocated in a bigger
memory region. This memory region will be represented by an array as well.

For example, the shape speciciation [2, (3, 2)] will create an array
flat of size 8. The first view will have a size of (2,) and point
to the first two entries, i.e. flat`[:2]`, while the second array will
have a shape of ``(3, 2) and point to the elements flat[2:8].

	Parameters:	spec : list of tuples of ints

Specification of the desired shapes.

empty_func : callable

function that returns a memory region given an integer of the desired
size. (Examples include numpy.empty, which is the default,
gnumpy.empty and theano.tensor.empty.

	Returns:	flat : array_like (depending on empty_func)

Memory region containing all the views.

views : list of array_like

Variable number of results. Each contains a view into the array
flat.

Examples

>>> from climin.util import empty_with_views
>>> flat, (w, b) = empty_with_views([(3, 2), 2])
>>> w[...] = 1
>>> b[...] = 2
>>> flat
array([1., 1., 1., 1., 1., 1., 2., 2.])
>>> flat[0] = 3
>>> w
array([[3., 1.],
 [1., 1.],
 [1., 1.]])

	
climin.util.shaped_from_flat(flat, shapes)

	Given a one dimensional array flat, return a list of views of shapes
shapes on that array.

Each view will point to a distinct memory region, consecutively allocated
in flat.

	Parameters:	flat : array_like

Array of one dimension.

shapes : list of tuples of ints

Each entry of this list specifies the shape of the corresponding view
into flat.

	Returns:	views : list of arrays

Each entry has the shape given in shapes and points as a view into
flat.

	
climin.util.minibatches(arr, batch_size, d=0)

	Return a list of views of the given arr.

Each view represents a mini bach of the data.

	Parameters:	arr : array_like

Array to obtain batches from. Needs to be slicable. If d > 0, needs
to have a .shape attribute from which the number of samples can
be obtained.

batch_size : int

Size of a batch. Last batch might be smaller if batch_size is not a
divisor of arr.

d : int, optional, default: 0

Dimension along which the data samples are separated and thus slicing
should be done.

	Returns:	mini_batches : list

Each item of the list is a view of arr. Views are ordered.

	
climin.util.iter_minibatches(lst, batch_size, dims, n_cycles=None, random_state=None, discard_illsized_batch=False)

	Return an iterator that successively yields tuples containing aligned
minibatches of size batch_size from slicable objects given in lst, in
random order without replacement.
Because different containers might require slicing over different
dimensions, the dimension of each container has to be givens as a list
dims.

	Parameters:	lst : list of array_like

Each item of the list will be sliced into mini batches in alignment
with the others.

batch_size : int

Size of each batch. Last batch might be smaller.

dims : list

Aligned with lst, gives the dimension along which the data samples
are separated.

n_cycles : int, optional [default: None]

Number of cycles after which to stop the iterator. If None, will
yield forever.

random_state : a numpy.random.RandomState object, optional [default

Random number generator that will act as a seed for the minibatch order.

discard_illsized_batch : bool, optional [default

If True and the length of the sliced dimension is not divisible by
batch_size, the leftover samples are discarded.

	Returns:	batches : iterator

Infinite iterator of mini batches in random order (without replacement).

 Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	climin 0.1 documentation

 Python Module Index

 c

 			

 		
 c	

 	[image: -]
 	
 climin	

 	
 	
 climin.adadelta	

 	
 	
 climin.adam	

 	
 	
 climin.bfgs	

 	
 	
 climin.cg	

 	
 	
 climin.gd	

 	
 	
 climin.initialize	

 	
 	
 climin.linesearch	

 	
 	
 climin.rmsprop	

 	
 	
 climin.rprop	

 	
 	
 climin.schedule	

 Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	climin 0.1 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | G
 | I
 | L
 | M
 | N
 | R
 | S
 | W

_

 	

 	__init__() (climin.adadelta.Adadelta method)

 	

 	(climin.adam.Adam method)

 	(climin.bfgs.Bfgs method)

 	(climin.bfgs.Lbfgs method)

 	(climin.cg.ConjugateGradient method)

 	(climin.cg.NonlinearConjugateGradient method)

 	(climin.gd.GradientDescent method)

 	(climin.linesearch.BackTrack method)

 	(climin.linesearch.StrongWolfeBackTrack method)

 	(climin.rmsprop.RmsProp method)

 	(climin.rprop.Rprop method)

A

 	

 	Adadelta (class in climin.adadelta)

 	

 	Adam (class in climin.adam)

B

 	

 	BackTrack (class in climin.linesearch)

 	Bfgs (class in climin.bfgs)

 	

 	bound_spectral_radius() (in module climin.initialize)

C

 	

 	climin.adadelta (module)

 	climin.adam (module)

 	climin.bfgs (module)

 	climin.cg (module)

 	climin.gd (module)

 	climin.initialize (module)

 	

 	climin.linesearch (module)

 	climin.rmsprop (module)

 	climin.rprop (module)

 	climin.schedule (module)

 	ConjugateGradient (class in climin.cg)

D

 	

 	decaying() (in module climin.schedule)

E

 	

 	empty_with_views() (in module climin.util)

G

 	

 	GradientDescent (class in climin.gd)

I

 	

 	iter_minibatches() (in module climin.util)

L

 	

 	Lbfgs (class in climin.bfgs)

 	

 	linear_annealing() (in module climin.schedule)

M

 	

 	minibatches() (in module climin.util)

N

 	

 	NonlinearConjugateGradient (class in climin.cg)

R

 	

 	randomize_normal() (in module climin.initialize)

 	repeater() (in module climin.schedule)

 	

 	RmsProp (class in climin.rmsprop)

 	Rprop (class in climin.rprop)

S

 	

 	ScipyLineSearch (class in climin.linesearch)

 	search() (climin.linesearch.BackTrack method)

 	shaped_from_flat() (in module climin.util)

 	

 	sparsify_columns() (in module climin.initialize)

 	StrongWolfeBackTrack (class in climin.linesearch)

 	SutskeverBlend (class in climin.schedule)

W

 	

 	WolfeLineSearch (class in climin.linesearch)

 Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

 _static/down-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		climin 0.1 documentation »

 All modules for which code is available

		climin.adadelta

		climin.adam

		climin.bfgs

		climin.cg

		climin.gd

		climin.initialize

		climin.linesearch

		climin.rmsprop

		climin.rprop

		climin.schedule

		climin.util

 © Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		climin 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, climin developers.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

